Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 14: 1111385, 2023.
Article in English | MEDLINE | ID: covidwho-2257661

ABSTRACT

Emerging SARS-CoV-2 variants have accrued mutations within the spike protein rendering most therapeutic monoclonal antibodies against COVID-19 ineffective. Hence there is an unmet need for broad-spectrum mAb treatments for COVID-19 that are more resistant to antigenically drifted SARS-CoV-2 variants. Here we describe the design of a biparatopic heavy-chain-only antibody consisting of six antigen binding sites recognizing two distinct epitopes in the spike protein NTD and RBD. The hexavalent antibody showed potent neutralizing activity against SARS-CoV-2 and variants of concern, including the Omicron sub-lineages BA.1, BA.2, BA.4 and BA.5, whereas the parental components had lost Omicron neutralization potency. We demonstrate that the tethered design mitigates the substantial decrease in spike trimer affinity seen for escape mutations for the hexamer components. The hexavalent antibody protected against SARS-CoV-2 infection in a hamster model. This work provides a framework for designing therapeutic antibodies to overcome antibody neutralization escape of emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Immunoglobulin Heavy Chains/genetics , Antibodies, Monoclonal
2.
Nat Commun ; 13(1): 2921, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1864741

ABSTRACT

Human coronavirus OC43 is a globally circulating common cold virus sustained by recurrent reinfections. How it persists in the population and defies existing herd immunity is unknown. Here we focus on viral glycoprotein S, the target for neutralizing antibodies, and provide an in-depth analysis of its antigenic structure. Neutralizing antibodies are directed to the sialoglycan-receptor binding site in S1A domain, but, remarkably, also to S1B. The latter block infection yet do not prevent sialoglycan binding. While two distinct neutralizing S1B epitopes are readily accessible in the prefusion S trimer, other sites are occluded such that their accessibility must be subject to conformational changes in S during cell-entry. While non-neutralizing antibodies were broadly reactive against a collection of natural OC43 variants, neutralizing antibodies generally displayed restricted binding breadth. Our data provide a structure-based understanding of protective immunity and adaptive evolution for this endemic coronavirus which emerged in humans long before SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Coronavirus OC43, Human/metabolism , Epitopes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Sci Immunol ; 7(73): eabp9312, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1807305

ABSTRACT

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays notable immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other variants of concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta, and Omicron (BA.1/BA.2) VOCs. Using cryo-electron microscopy and site-directed mutagenesis experiments, we showed that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protected mice and hamsters prophylactically against challenge with all current SARS-CoV-2 VOCs and showed therapeutic activity against SARS-CoV-2 challenge in both animal models. Our findings demonstrate that 87G7 holds promise as a prophylactic or therapeutic agent for COVID-19 that is more resilient to SARS-CoV-2 antigenic diversity.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Antibodies, Neutralizing/pharmacology , Cryoelectron Microscopy , Humans , Membrane Glycoproteins , Mice , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
4.
Nature Communications ; 11(1), 2020.
Article in English | PMC | ID: covidwho-1387317

ABSTRACT

The competing interests section of the original article contained an error. In the sentence “A patent application has been filed on 12 March 2020 on monoclonal antibodies targeting SARS-CoV-2 (United Kingdom patent application no. 2003632.3”, the number 2003632 was hyperlinked in error to an irrelevant page. The link has been removed both from the PDF and the HTML version of the article.

5.
Nat Commun ; 12(1): 1715, 2021 03 17.
Article in English | MEDLINE | ID: covidwho-1139739

ABSTRACT

The coronavirus spike glycoprotein, located on the virion surface, is the key mediator of cell entry and the focus for development of protective antibodies and vaccines. Structural studies show exposed sites on the spike trimer that might be targeted by antibodies with cross-species specificity. Here we isolated two human monoclonal antibodies from immunized humanized mice that display a remarkable cross-reactivity against distinct spike proteins of betacoronaviruses including SARS-CoV, SARS-CoV-2, MERS-CoV and the endemic human coronavirus HCoV-OC43. Both cross-reactive antibodies target the stem helix in the spike S2 fusion subunit which, in the prefusion conformation of trimeric spike, forms a surface exposed membrane-proximal helical bundle. Both antibodies block MERS-CoV infection in cells and provide protection to mice from lethal MERS-CoV challenge in prophylactic and/or therapeutic models. Our work highlights an immunogenic and vulnerable site on the betacoronavirus spike protein enabling elicitation of antibodies with unusual binding breadth.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Betacoronavirus/immunology , Epitopes/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Betacoronavirus/classification , Camelus , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cross Reactions , Epitopes/chemistry , Epitopes/genetics , Humans , Mice , Protein Conformation , Protein Subunits , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
6.
Nat Commun ; 11(1): 2251, 2020 05 04.
Article in English | MEDLINE | ID: covidwho-164588

ABSTRACT

The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Antibody Affinity/immunology , Betacoronavirus/chemistry , Betacoronavirus/drug effects , COVID-19 , Chlorocebus aethiops , Conserved Sequence , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cross Reactions/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Humans , In Vitro Techniques , Inhibitory Concentration 50 , Models, Molecular , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Binding/drug effects , Protein Domains/immunology , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL